:
:

Powered by GetResponse email marketing software

Actually Make Money Online

Your Helpful Resource About "Actually Make Money Online"

Thursday, May 21, 2020

Scanning For Padding Oracles

As you might have heard, we recently got our paper on padding oracle attacks accepted to the USENIX Security Conference. In this paper, we describe and evaluate a scanning methodology with which we found several padding oracle vulnerabilities in devices from various vendors. In total, we found that 1.83% of the Alexa Top 1 Million have padding oracle vulnerabilities.

To test whether a server is vulnerable, we specified different padding oracle vectors which we send to the system under test, using different cipher suites and protocol versions. If the server does not behave identically (on both the TLS and TCP layers), we consider it to be vulnerable to a padding oracle attack, since it is leaking information about the plaintext via behavior differences. Depending on the responses to such padding oracle vectors, one can estimate which implementation is responsible for the vulnerability. We contacted quite a few website owners and tried to cooperate with them, to find out which vendors and TLS stacks are responsible for the identified vulnerabilities. You can find our current disclosure status on this issue on https://github.com/RUB-NDS/TLS-Padding-Oracles.
We are currently in contact with other vendors to fix the remaining vulnerabilities, but the some of the rare (in terms of the number of affected hosts) vulnerabilities are currently not attributed. To fix the remaining vulnerabilities, we ask for your assistance to help get rid of this issue. For this purpose, we integrated a standalone version of our padding oracle evaluation tool into our TLS-Scanner (v.2.7) project. This tool allows you (among other things) to evaluate if a specific server is vulnerable.

When the tool detects a vulnerability, it tries to attribute the vulnerability to a specific vendor or CVE. If we already know of the vulnerability of the server you scanned, the tool will print its details. If the tool does not have a description of the vulnerability in its database, it will ask you to notify us about the vulnerable server, such that we can notify the vendor and get the device fixed. To be clear: the tool never sends any data to us - you have the choice of whether to notify us (and what details to include). There is a chance that the tool's attribution is also mistaken, that is, the tool lists a vendor for your host, but you know for sure that you do not use an implementation by this vendor. Please contact us in such cases as well.

How to use the Tool

First, you need to grab hold of the tool. There are 3 ways to get your hands dirty: pre-compiled, self-compiled or Docker. We provide a pre-compiled version of the tool since the compilation process can get quite messy if you are not familiar with java and maven. You can directly download the resulting project here. However, if you also want to play around with the code, you have to compile everything yourself.

Building the TLS-Scanner

For this, you will need (Git), maven (sudo apt-get install maven), OpenJDK-8  (I can guarantee that this version works, other versions might work as well, have not tested it).

You will need to get TLS-Attacker 2.9 (if you do not already have it):
Now we can clone and install the TLS-Scanner

Docker

We also provide a Dockerfile, which lets you run the scanner directly

Getting Started


If you start the TLS-Scanner you should be greeted by a usage info, similar to the one below:

 or


This should give you an overview of the supported command line flags. The only really required one is the -connect flag (similar to OpenSSL and TLS-Attacker), with which you specify which host to scan. The most basic command is therefore:

Your output may look something like this:

By default, TLS-Scanner will run single-threaded. In such cases the scanning will take a while; just how long it will take depends on your server configuration. The scanner also supports multi-threading, which drastically improves the performance. There are two parameters to play around with, -threads, which controls how many different "probes" are executed in parallel, and -aggressive , which controls how many handshakes can be executed simultaneously. If you want the fastest results the following parameters are usually a good choice:

But lets get back to the results of the Scanner. Currently the Scanner supports a bunch of well known tests, like supported ciphersuites or protocol versions. These are very similar to what you may be used to from other scanners like ssllabs or testssl.sh.

Padding Oracles

The main advantage of our scanner is the ability to scan for padding oracle vulnerabilities (which is probably why you are reading this post). You will see if you are vulnerable in the "Attack Vulnerabilities" section. For example, when scanning hackmanit.de, the result is false. Good for us! But as you might have seen there is also another section in the scanner report:"PaddingOracle Responsemap"
This section lists the responses of the scanned host for each padding oracle vector, for each cipher suite and protocol version. For hackmanit.de, there is no detected difference in responses, which means hackmanit.de is not vulnerable to the attack:
If we want, we can also look at the concrete responses of the server. For this purpose, we start the scanner with the -reportDetail flag:

With this flag we now get the following details:

So what does this all mean? First of all, we named our malformed records. The interpretation of those names is visualized in the following table:
BasicMac-<position>-<XOR>  A Record with ApplicationData, MAC and padding bytes, where the padding byte at <position> is XOR'd <XOR>
 MissingMacByteFirst A Record without ApplicationData, where the first byte of the MAC is missing
 MissingMacByteLast A Record without ApplicationData, where the last byte of the MAC is missing
 Plain FF A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xFF 
 Plain 3F A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xF3
 InvPadValMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and valid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The Padding is invalid at <position>.
 ValPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with valid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at <position>.
 InvPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at the first position. The Padding is invalid at <position>.

Next to the name you can see what the actual response from the server was. Alert messages which are in [] brackets indicate that the alert was a fatal alert while () brackets indicate a warning alert. ENC means that the messages were encrypted (which is not always the case). The last symbol in each line indicates the state of the socket. An X represents a closed socket with a TCP FIN, a T indicates that the socket was still open at the time of measurement and an @ indicates that the socket was closed with an RST. So how did Hackmanit respond? We see a [BAD_RECORD_MAC]  ENC X, which means we received an ENCrypted FATAL BAD_RECORD_MAC alert, and the TCP connection was closed with a TCP FIN. If a server appears to be vulnerable, the scanner will execute the scan a total of three times to confirm the vulnerability. Since this response is identical to all our vectors, we know that the server was not vulnerable and the scanner is not re-executing the workflows.

Here is an example of a vulnerable host:
As you can see, this time the workflows got executed multiple times, and the scanner reports the cipher suite and version as vulnerable because of "SOCKET_STATE". This means that in some cases the socket state revealed information about the plaintext. If you look closely, you can see that for ValPadInvMac-[0]-0-59, ValPadInvMac-[8]-0-59 and ValPadInvMac-[15]-0-59 the server failed to close the TCP socket, while for all other vectors the TCP connect was closed with a TCP FIN. The server was therefore vulnerable.

Since the server was vulnerable, TLS-Scanner will also print an additional section: "PaddingOracle Details"

In this section we try to identify the vulnerability. In the example above, TLS-Scanner will print the following:

As you can see, we attribute this vulnerability to OpenSSL <1.0.2r. We do so by looking at the exact responses to our malformed records. We additionally print two important facts about the vulnerability: Whether it is observable and its strength. The precise details of these properties are beyond the scope of this blogpost, but the short version is:
If an oracle is observable, a man in the middle attacker can see the differences between the vectors by passively observing the traffic, without relying on browser or application specific tricks. A strong oracle has no limitations in the number of consecutive bytes an attacker can decrypt. If an oracle is STRONG and OBSERVABLE, then an attacker can realistically exploit it. This is the case in the example above.
For more details on this, you will have to wait for the paper.

Attribution

As you can see, we try to fingerprint the responsible device/implementation. However, we were not able to identify all vulnerable implementations yet. If we cannot attribute a vulnerability you will receive the following message:

Could not identify the vulnerability. Please contact us if you know which software/hardware is generating this behavior.

If you encounter this message, we do not know yet who is responsible for this padding oracle and would be happy to know which device/vendor is responsible. If you know who is, please contact us so that we can get in contact with the vendor to fix the issue. To reiterate, the tool never sends any data back to us, and it is your choice whether to contact us manually or not.

There are also some cases in which we can identify the vendor, but the vendor has not patched the vulnerability yet. If you encounter such a host, the scanner will tell you that we know the responsible vendor. To prevent abuse, we do not include further details.

Non-Determinism and Errors

In some cases, the scanner is unable to scan for padding oracles and reports ERROR or non-deterministic responses. The ERROR cases appear if the scanner failed could not handshake with the specified cipher suite and protocol version. This might be due to a bug in the tested TLS-Server or a bug in TLS-Attacker or TLS-Scanner. If you think the handshake fails because of an issue on our side, please open an issue on Github, and we will investigate. The more interesting cases are the non-deterministic ones. In such cases the scanner observed non-identical scan results in three separate scans. This can be due to non-determinism in the software, connection errors, server load or non-homogeneous load balancing. Currently, you will have to analyze these cases manually. In the paper, we excluded such hosts from our study because we did not want to artificially improve our results. But we understand that you as a tester want to know if the server is vulnerable or not. If the server is not truly vulnerable you would see the differences between the answers spread across all the different vectors. If the differences only appear on a subset of malformed records the server is very likely vulnerable. If you are unsure, you can also always scan multiple times (or scan slowly), increase the timeout, or if you are entirely lost get in touch with us. 


How YOU can help

Please use the scanner on all your hosts and check for padding oracle vulnerabilities. If the scanner can identify your vulnerability, a patch should already be available. Please patch your system! If the scanner does not identify the vulnerability (and instructs you to contact us), please contact us with the details (robert.merget@rub.de). If you can provide us with the detailed output of the scanner or even better, the name of the host, with the corresponding vendor, we could match the results with our database and help fix the issue. We can already attribute over 90% of the vulnerabilities, but there is still a lot to be discovered. We mostly scanned the Alexa top 1-million on port 443. Other protocols like IMAPS, POP3S, etc. might have different implementations with different vulnerabilities. If you find vulnerabilities with our tool, please give us credit. It helps us to get more funding for our project.

Issues with the Scanner


A notable feature of our scanner is that we do not actively try to avoid intolerances (like not scanning with a lot of cipher suites in the Hello messages etc.). We believe that doing so would hide important bugs. We are currently experimenting with intolerances checks, but the feature is now still in beta. If we cannot scan a server (most of the time due to intolerances or SNI problems), the scanner will report a lot of intolerances and usually no supported protocol versions. Some intolerances may trick the scanner into reporting false results. At the current stage, we cannot make any guarantees. If you are using this tool during a pentest, it might be smart to rescan with other scanners (like the recently released padcheck tool from our colleague Craig Young) to find the ground truth (this is good advice in general, since other mainstream scanners likely have the same issues). Note however that it is very unlikely that the scanner reports a false positive on a padding oracle scan.


Conclusion

There are still a lot of padding oracle vulnerabilities out there - and a lot of them are still unpatched. We hope you will find some bugs with the tool :) Happy H4cking :D


Acknowlegements

This is joint work from Robert Merget (@ic0nz1), Juraj Somorovsky (@jurajsomorovsky),  Nimrod Aviram (@NimrodAviram), Janis Fliegenschmidt (@JanisFliegens), Craig Young (@craigtweets), Jörg Schwenk (@JoergSchwenk) and (Yuval Shavitt).
More info
  1. Hacking Language
  2. Hacking Etico
  3. Hacking Linkedin
  4. Growth Hacking Definicion
  5. Raspberry Hacking
  6. Etica Definicion
  7. Hacker Etico
  8. Windows Hacking
  9. Javascript Hacking
  10. Curso De Ciberseguridad Y Hacking Ético
  11. Body Hacking

Rootkit Umbreon / Umreon - X86, ARM Samples



Pokémon-themed Umbreon Linux Rootkit Hits x86, ARM Systems
Research: Trend Micro


There are two packages
one is 'found in the wild' full and a set of hashes from Trend Micro (all but one file are already in the full package)






Download

Download Email me if you need the password  



File information

Part one (full package)

#File NameHash ValueFile Size (on Disk)Duplicate?
1.umbreon-ascii0B880E0F447CD5B6A8D295EFE40AFA376085 bytes (5.94 KiB)
2autoroot1C5FAEEC3D8C50FAC589CD0ADD0765C7281 bytes (281 bytes)
3CHANGELOGA1502129706BA19667F128B44D19DC3C11 bytes (11 bytes)
4cli.shC846143BDA087783B3DC6C244C2707DC5682 bytes (5.55 KiB)
5hideportsD41D8CD98F00B204E9800998ECF8427E0 bytes ( bytes)Yes, of file promptlog
6install.sh9DE30162E7A8F0279E19C2C30280FFF85634 bytes (5.5 KiB)
7Makefile0F5B1E70ADC867DD3A22CA62644007E5797 bytes (797 bytes)
8portchecker006D162A0D0AA294C85214963A3D3145113 bytes (113 bytes)
9promptlogD41D8CD98F00B204E9800998ECF8427E0 bytes ( bytes)
10readlink.c42FC7D7E2F9147AB3C18B0C4316AD3D81357 bytes (1.33 KiB)
11ReadMe.txtB7172B364BF5FB8B5C30FF528F6C51252244 bytes (2.19 KiB)
12setup694FFF4D2623CA7BB8270F5124493F37332 bytes (332 bytes)
13spytty.sh0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)Yes, of file spytty.sh
14umbreon.c91706EF9717176DBB59A0F77FE95241C1007 bytes (1007 bytes)
15access.c7C0A86A27B322E63C3C29121788998B8713 bytes (713 bytes)
16audit.cA2B2812C80C93C9375BFB0D7BFCEFD5B1434 bytes (1.4 KiB)
17chown.cFF9B679C7AB3F57CFBBB852A13A350B22870 bytes (2.8 KiB)
18config.h980DEE60956A916AFC9D2997043D4887967 bytes (967 bytes)
19config.h.dist980DEE60956A916AFC9D2997043D4887967 bytes (967 bytes)Yes, of file config.h
20dirs.c46B20CC7DA2BDB9ECE65E36A4F987ABC3639 bytes (3.55 KiB)
21dlsym.c796DA079CC7E4BD7F6293136604DC07B4088 bytes (3.99 KiB)
22exec.c1935ED453FB83A0A538224AFAAC71B214033 bytes (3.94 KiB)
23getpath.h588603EF387EB617668B00EAFDAEA393183 bytes (183 bytes)
24getprocname.hF5781A9E267ED849FD4D2F5F3DFB8077805 bytes (805 bytes)
25includes.hF4797AE4B2D5B3B252E0456020F58E59629 bytes (629 bytes)
26kill.cC4BD132FC2FFBC84EA5103ABE6DC023D555 bytes (555 bytes)
27links.c898D73E1AC14DE657316F084AADA58A02274 bytes (2.22 KiB)
28local-door.c76FC3E9E2758BAF48E1E9B442DB98BF8501 bytes (501 bytes)
29lpcap.hEA6822B23FE02041BE506ED1A182E5CB1690 bytes (1.65 KiB)
30maps.c9BCD90BEA8D9F9F6270CF2017F9974E21100 bytes (1.07 KiB)
31misc.h1F9FCC5D84633931CDD77B32DB1D50D02728 bytes (2.66 KiB)
32netstat.c00CF3F7E7EA92E7A954282021DD72DC41113 bytes (1.09 KiB)
33open.cF7EE88A523AD2477FF8EC17C9DCD7C028594 bytes (8.39 KiB)
34pam.c7A947FDC0264947B2D293E1F4D69684A2010 bytes (1.96 KiB)
35pam_private.h2C60F925842CEB42FFD639E7C763C7B012480 bytes (12.19 KiB)
36pam_vprompt.c017FB0F736A0BC65431A25E1A9D393FE3826 bytes (3.74 KiB)
37passwd.cA0D183BBE86D05E3782B5B24E2C964132364 bytes (2.31 KiB)
38pcap.cFF911CA192B111BD0D9368AFACA03C461295 bytes (1.26 KiB)
39procstat.c7B14E97649CD767C256D4CD6E4F8D452398 bytes (398 bytes)
40procstatus.c72ED74C03F4FAB0C1B801687BE200F063303 bytes (3.23 KiB)
41readwrite.cC068ED372DEAF8E87D0133EAC0A274A82710 bytes (2.65 KiB)
42rename.cC36BE9C01FEADE2EF4D5EA03BD2B3C05535 bytes (535 bytes)
43setgid.c5C023259F2C244193BDA394E2C0B8313667 bytes (667 bytes)
44sha256.h003D805D919B4EC621B800C6C239BAE0545 bytes (545 bytes)
45socket.c348AEF06AFA259BFC4E943715DB5A00B579 bytes (579 bytes)
46stat.cE510EE1F78BD349E02F47A7EB001B0E37627 bytes (7.45 KiB)
47syslog.c7CD3273E09A6C08451DD598A0F18B5701497 bytes (1.46 KiB)
48umbreon.hF76CAC6D564DEACFC6319FA167375BA54316 bytes (4.21 KiB)
49unhide-funcs.c1A9F62B04319DA84EF71A1B091434C644729 bytes (4.62 KiB)
50cryptpass.py2EA92D6EC59D85474ED7A91C8518E7EC192 bytes (192 bytes)
51environment.sh70F467FE218E128258D7356B7CE328F11086 bytes (1.06 KiB)
52espeon-connect.shA574C885C450FCA048E79AD6937FED2E247 bytes (247 bytes)
53espeon-shell9EEF7E7E3C1BEE2F8591A088244BE0CB2167 bytes (2.12 KiB)
54espeon.c499FF5CF81C2624B0C3B0B7E9C6D980D14899 bytes (14.55 KiB)
55listen.sh69DA525AEA227BE9E4B8D59ACFF4D717209 bytes (209 bytes)
56spytty.sh0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)
57ssh-hidden.shAE54F343FE974302F0D31776B72D0987127 bytes (127 bytes)
58unfuck.c457B6E90C7FA42A7C46D464FBF1D68E2384 bytes (384 bytes)
59unhide-self.pyB982597CEB7274617F286CA80864F499986 bytes (986 bytes)
60listen.shF5BD197F34E3D0BD8EA28B182CCE7270233 bytes (233 bytes)

part 2 (those listed in the Trend Micro article)
#File NameHash ValueFile Size (on Disk)
1015a84eb1d18beb310e7aeeceab8b84776078935c45924b3a10aa884a93e28acA47E38464754289C0F4A55ED7BB556489375 bytes (9.16 KiB)
20751cf716ea9bc18e78eb2a82cc9ea0cac73d70a7a74c91740c95312c8a9d53aF9BA2429EAE5471ACDE820102C5B81597512 bytes (7.34 KiB)
30a4d5ffb1407d409a55f1aed5c5286d4f31fe17bc99eabff64aa1498c5482a5f0AB776FA8A0FBED2EF26C9933C32E97C1011 bytes (1011 bytes)
40ce8c09bb6ce433fb8b388c369d7491953cf9bb5426a7bee752150118616d8ffB982597CEB7274617F286CA80864F499986 bytes (986 bytes)
5122417853c1eb1868e429cacc499ef75cfc018b87da87b1f61bff53e9b8e86709EEF7E7E3C1BEE2F8591A088244BE0CB2167 bytes (2.12 KiB)
6409c90ecd56e9abcb9f290063ec7783ecbe125c321af3f8ba5dcbde6e15ac64aB4746BB5E697F23A5842ABCAED36C9146149 bytes (6 KiB)
74fc4b5dab105e03f03ba3ec301bab9e2d37f17a431dee7f2e5a8dfadcca4c234D0D97899131C29B3EC9AE89A6D49A23E65160 bytes (63.63 KiB)
88752d16e32a611763eee97da6528734751153ac1699c4693c84b6e9e4fb08784E7E82D29DFB1FC484ED277C70218781855564 bytes (54.26 KiB)
9991179b6ba7d4aeabdf463118e4a2984276401368f4ab842ad8a5b8b730885222B1863ACDC0068ED5D50590CF792DF057664 bytes (7.48 KiB)
10a378b85f8f41de164832d27ebf7006370c1fb8eda23bb09a3586ed29b5dbdddfA977F68C59040E40A822C384D1CEDEB6176 bytes (176 bytes)
11aa24deb830a2b1aa694e580c5efb24f979d6c5d861b56354a6acb1ad0cf9809bDF320ED7EE6CCF9F979AEFE451877FFC26 bytes (26 bytes)
12acfb014304b6f2cff00c668a9a2a3a9cbb6f24db6d074a8914dd69b43afa452584D552B5D22E40BDA23E6587B1BC532D6852 bytes (6.69 KiB)
13c80d19f6f3372f4cc6e75ae1af54e8727b54b51aaf2794fedd3a1aa463140480087DD79515D37F7ADA78FF5793A42B7B11184 bytes (10.92 KiB)
14e9bce46584acbf59a779d1565687964991d7033d63c06bddabcfc4375c5f1853BBEB18C0C3E038747C78FCAB3E0444E371940 bytes (70.25 KiB)

Related word

$$$ Bug Bounty $$$

What is Bug Bounty ?



A bug bounty program, also called a vulnerability rewards program (VRP), is a crowdsourcing initiative that rewards individuals for discovering and reporting software bugs. Bug bounty programs are often initiated to supplement internal code audits and penetration tests as part of an organization's vulnerability management strategy.




Many software vendors and websites run bug bounty programs, paying out cash rewards to software security researchers and white hat hackers who report software vulnerabilities that have the potential to be exploited. Bug reports must document enough information for for the organization offering the bounty to be able to reproduce the vulnerability. Typically, payment amounts are commensurate with the size of the organization, the difficulty in hacking the system and how much impact on users a bug might have.


Mozilla paid out a $3,000 flat rate bounty for bugs that fit its criteria, while Facebook has given out as much as $20,000 for a single bug report. Google paid Chrome operating system bug reporters a combined $700,000 in 2012 and Microsoft paid UK researcher James Forshaw $100,000 for an attack vulnerability in Windows 8.1.  In 2016, Apple announced rewards that max out at $200,000 for a flaw in the iOS secure boot firmware components and up to $50,000 for execution of arbitrary code with kernel privileges or unauthorized iCloud access.


While the use of ethical hackers to find bugs can be very effective, such programs can also be controversial. To limit potential risk, some organizations are offering closed bug bounty programs that require an invitation. Apple, for example, has limited bug bounty participation to few dozen researchers.

More articles


Blockchain Exploitation Labs - Part 2 Hacking Blockchain Authorization


Bypassing Blockchain Authorization via Unsecured Functions


Note: Since the first part of this series I have also uploaded some further videos on remediation of reentrancy and dealing with compiler versions when working with this hacking blockchain series.  Head to the console cowboys YouTube account to check those out.  Haha as mentioned before I always forget to post blogs when I get excited making videos and just move on to my next project… So make sure to subscribe to the YouTube if you are waiting for any continuation of a video series.. It may show up there way before here. 

Note 2:  You WILL run into issues when dealing with Ethereum hacking, and you will have to google them as versions and functionality changes often... Be cognizant of versions used hopefully you will not run into to many hard to fix issues. 

In the second part of this lab series we are going to take a look at privacy issues on the blockchain which can result in a vulnerably a traditional system may  not face. Since typically blockchain projects are open source and also sometimes viewable within blockchain explorers but traditional application business logic is not usually available to us. With traditional applications we might not find these issues due to lack of knowledge of internal functionality or inability to read private values on a remote server side script.  After we review some issues we are going to exploit an authorization issues by writing web3.js code to directly bypass vertical authorization restrictions.

Blockchain projects are usually open source projects which allow you to browse their code and see what's going on under the hood.  This is fantastic for a lot of reasons but a developer can run into trouble with this if bad business logic decisions are deployed to the immutable blockchain.  In the first part of this series I mentioned that all uploaded code on the blockchain is immutable. Meaning that if you find a vulnerability it cannot be patched. So let's think about things that can go wrong..

A few things that can go wrong:
  • Randomization functions that use values we can predict if we know the algorithm
  • Hard-coded values such as passwords and private variables you can't change.
  • Publicly called functions which offer hidden functionality
  • Race conditions based on how requirements are calculated

Since this will be rather technical, require some setup and a lot of moving parts we will follow this blog via the video series below posting videos for relevant sections with a brief description of each.  I posted these a little bit ago but have not gotten a chance to post the blog associated with it.  Also note this series is turning into a full lab based blockchain exploitation course so keep a lookout for that.

In this first video you will see how data about your project is readily available on the blockchain in multiple formats for example:
  • ABI data that allows you to interact with methods.
  • Actual application code.
  • Byte code and assembly code.
  • Contract addresses and other data.

 Lab Video Part 1: Blockchain OSINT: 



Once you have the data you need to interact with a contract on the blockchain via some OSINT how do you actually interface with it? That's the question we are going to answer in this second video. We will take the ABI contract array and use it to interact with methods on the blockchain via Web3.js and then show how this correlates to its usage in an HTML file

Lab Video Part 2: Connecting to a Smart Contract: 




Time to Exploit an Application:

Exploit lab time, I created an vulnerable application you can use to follow along in the next video. Lab files can be downloaded from the same location as the last blog located below. Grab the AuthorizationLab.zip file:

Lab file downloads:



Ok so you can see what's running on the blockchain, you can connect to it, now what?   Now we need to find a vulnerability and show how to exploit it. Since we are talking about privacy in this blog and using it to bypass issues. Lets take a look at a simple authorization bypass we can exploit by viewing an authorization coding error and taking advantage of it to bypass restrictions set in the Smart Contract.  You will also learn how to setup a local blockchain for testing purposes and you can download a hackable application to follow along with the exercises in the video..

Lab Video Part 3:  Finding and hacking a Smart Contract Authorization Issue: 





Summary:

In this part of the series you learned a lot, you learned how to transfer your OSINT skills to the blockchain. Leverage the information found to connect to that Smart Contract. You also learned how to interact with methods and search for issues that you can exploit. Finally you used your browsers developer console as a means to attack the blockchain application for privilege escalation.

More info


Top10 Java Script Blogs To Improve Coding Skills

10 Top JavaScript Blogs to Improve Coding Skills
 

The Best JavaScript Blogs

With two decades of improvement, JavaScript has become one of the most popular programming languages of all time. The journey started in 1995 when Brendan Eich created JavaScript in just 10 days. From there, it has seen multiple revisions, drafts, and growth in the form of frameworks, API's, modules, etc. Today, we will go forward and list the top JavaScript blogs from the internet so that you can enjoy the lastest development in the field of JavaScript.

According to RedMonk programming language rankings and GitHut.info, JavaScript is leading the pack in the terms of repositories and the most discussed programming language on StackOverFlow. The numbers itself speaks about the future of JavaScript as it has grown beyond the initial capabilities of simple DOM manipulations.

Learning JavaScript, on the other hand, can be a tricky proposition. New libraries, features, API's or Style Guide, pop up almost every day. The speed of iteration is beyond imagination, and that is why reading leading JavaScript blogs are the best approach to keep up with new changes.

Slack-clone-angularjs

JavaScript is blessed with experts that regularly contribute to the community using live streams, videos, blogs, podcasts, conferences and open source projects. An example of a cool experienced Javascript programmer is evilsoft who broadcasts awesome Javascript projects weekly on LiveEdu..

Some blogs are just gold even when they are not updated frequently. To help you reach the best content on JavaScript, let's list the best JavaScript blogs on the internet. The following blogs have a huge fan following and contain epic JavaScript content.

10 Top JavaScript Blogs to Improve Coding Skills

1. David Walsh Blog

David Walsh is a renowned name in the JavaScript world. He started his career with DZone, but his first real break came while working for SitePen as a Software Engineer. His blog composes of topics related to JavaScript, personal thoughts, guides and much more. The blog design is captivating and is going to hook you up on the first visit. Currently, he is working as a Senior Web Developer at Mozilla.

top javascript blogs

2. DailyJS

DailyJS is one of the best JavaScript blogs on the internet. The blog was started by Alex R. Young, an entrepreneur and Node.js expert in 2009. However, there are recent changes that don't sound great. Currently, the blog is no longer updated, but that does not make the content useless at all. The blog covers diverse content on JavaScript including frameworks, API's, libraries, etc.

2-daily-js

3. SitePoint

SitePoint is one of the leading web development portals since 2000. The main attraction of SitePoint is the collection of highly detailed articles. They are aimed at teaching something new to the readers. JavaScript, on the other hand, is one of the leading topics on the website where experts around the world contribute regularly. The rate of the new blog post is high, and you won't find a blog post that doesn't teach you something new. Truly, a great learning place for any JavaScript developer.

3-Sitepoint

4. JavaScript.com

Not technically a blog, but if you love JavaScript, then you need to follow the website's offerings. JavaScript.com news section is an aggregator for excellent JavaScript news, tutorials, guides, and much more. All you need to do is move to their news section and discover tons of new content surrounding JavaScript. The domain is owned by CodeSchool and is mainly utilized to contribute to the community and a landing page to their courses.

4-JavaScript

5. Brendan Eich

What's the best place to find JavaScript knowledge? The inventor? Well, you are right. Brendan Eich, the creator of JavaScript, keeps his blog with filled with his musings and other excellent thought processes about JavaScript. You can also find videos on the blog. Virtually, the blog is the mind of JavaScript where you understand it in an entirely different manner.

5-brendan-eich

6. JavaScript Playground

JavaScript Playground is yet another great place to get started with all the different JavaScript frameworks, API, and libraries. The focus is to work with the JavaScript ecosystem and provide high quality blog articles, screencast, and podcast for the audience. They also blog about different JavaScript guidelines, tips, and tricks.

6-JavaScript-Playground

7. Superhero.js

If you are looking for a superhero to fetch you the best resources on JavaScript, then you have finally found one. Superhero.js is a simple website that aims to collect everything related to JavaScript including videos, articles, presentations, etc. The content is divided into meaningful sections such as "Understanding JavaScript", "Organize Your Code", etc. Also, the page is regularly updated with new information.

7-superhero

8. JavaScript Jabber

Another "not a blog entry" into the list — JavaScript Jabber is a weekly podcast on JavaScript. Each podcast is around 1 hour of jabber and will sure have something for you to learn. They keep their tab on everything related to JavaScript, including core concepts to popular Framework discussions.

8-JavaScript-Jabber

9. Medium JavaScript Collection

Is medium a blog? Technically, not, but it contains high quality JavaScript articles. Medium is a way to connect to the audience so be ready to read many opinions on how JavaScript should have been, and what's wrong with JavaScript. Other than the ramblings, it hosts amazing JavaScript content such as Speed Up Web Apps.

9-JavaScript-collection-medium

10. Smashing Magazine

Smashing Magazine is one of the oldest websites covering web designing and development. They have a dedicated section for JavaScript, which is constantly updated with tutorials of high caliber. The tutorials surround other web development ideas such as UX, Productivity, etc.

10-smashing-magazine

Conclusion

Here are the ten best JavaScript blogs to improve your coding skills. The blogs and mix of other content types will help you to keep up with new changes in JavaScript field, and improve yourself accordingly.

If you are new to JavaScript and want to get started as soon as possible, check out the JavaScript learn section on LiveEdu.tv. And, yes, it is the most popular programming language on LiveEdu.tv which can benefit from your attention! Also, don't forget to leave a comment on how the JavaScript category page can be improved. We are listening!

Dr. Michael J. Garbade

About Author Dr. Michael Jurgen Garbade is the founder of LiveEdu.TV, Kyuda, Education Ecosystem. He is future Venture Capitalist, Future Politician and always on the lookout for the Next Big Challenge. Obtained Masters in business administration and physics, and a Ph.D. in finance with professional work experience in high-paced environments at Fortune 500 companies like Amazon and General Electric. Expertize: Python, PHP, Sencha Touch & C++, SEO, Finance, Strategy & E-commerce. He speaks English and German and has worked in the US, Europe, and Asia. At Education Ecosystem he is the CEO and runs business operations.

Continue reading


  1. Como Ser Hacker
  2. Wifi Hacking
  3. Hacking Etico Certificacion
  4. Curso Hacking Gratis
  5. Hacking Udemy
  6. Hacking Udemy